FeatureLab Mini — Classic vs DL
Minimal feature-detection demo with Classical and Deep Learning paths, now backed by a shared runtime.
0 255
0 255
0.02 0.15
2 8
3 7
1 200
1 300
0 50
10 50000
1 20
Enable subpixel iso-contours (marching squares) for DexiNed outputs.
0 5
0 1
-0.5 0.5
Place ONNX files in `./models` (create the folder next to the repo root).
**Expected filenames (defaults):**
- **Edges (Canny)**: hed.onnx, dexined.onnx
Corners (Harris): superpoint.onnx
Lines (Hough/LSD): sold2.onnx, hawp.onnx
Ellipses (Contours + fitEllipse): ellipse_head.onnx
Backends use onnxruntime with CoreML (if available) or CPU provider.